Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 95: 105755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061605

RESUMO

The Caucasian viper Macrovipera lebetina obtusa (MLO) is one of the most prevalent and venomous snakes in the Caucasus and the surrounding regions, yet the effects of MLO venom on cardiac function remain largely unknown. We examined the influence of MLO venom (crude and with inhibited metalloproteinases and phospholipase A2) on attachment and metabolic activity of rat neonatal cardiomyocytes (CM) and nonmyocytes (nCM), assessed at 1 and 24 h. After exposing both CM and nCM to varying concentrations of MLO venom, we observed immediate cytotoxic effects at a concentration of 100 µg/ml, causing detachment from the culture substrate. At lower MLO venom concentrations both cell types detached in a dose-dependent manner. Inhibition of MLO venom metalloproteinases significantly improved CM and nCM attachment after 1-hour exposure. At 24-hour exposure to metalloproteinases inhibited venom statistically significant enhancement was observed only in nCM attachment. However, metabolic activity of CM and nCM did not decrease upon exposure to the lower dose of the venom. Moreover, we demonstrated that metalloproteinases and phospholipases A2 are not the components of the MLO venom that change metabolic activity of both CM and nCM. These results provide a valuable platform to study the impact of MLO venom on prey cardiac function. They also call for further exploration of individual venom components for pharmaceutical purposes.


Assuntos
Viperidae , Ratos , Animais , Viperidae/metabolismo , Venenos de Víboras/toxicidade , Miócitos Cardíacos , Fosfolipases A2/metabolismo , Metaloproteases
2.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R962-R967, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279504

RESUMO

The close proximity of arteries and veins is a well-known anatomical finding documented in the extremities of all vertebrates. However, the physiological consequences of this arrangement are rarely given proper consideration nor are they covered in the textbook list of mechanisms that aid blood flow. We hypothesized that arterial pressure pulsations can significantly increase blood flow in the adjacent valve-containing vein segments. To demonstrate the existence of this mechanism, 10- to 15-cm sections of the bovine forelimb neurovascular bundle were isolated. The proximal and distal ends of the median artery and adjacent veins were cannulated, their tributaries were tied off, and the dissected bundle was then inserted into an airtight enclosure to mimic in vivo encasement by surrounding muscle. Pulsatile pressure was subsequently applied to the arterial segment while recording venous flow. At pressure settings mimicking physiological scenarios, arterial pulsations caused a highly significant increase in venous return. The amplitude of this effect was dependent on the arterial pulsation rate, stroke volume, and pressure gradient across the vein segment.


Assuntos
Artérias , Veias , Animais , Bovinos , Fluxo Pulsátil/fisiologia
3.
Sci Rep ; 11(1): 11505, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075100

RESUMO

Liebau pump is a tubular, non-peristaltic, pulsatile pump capable of creating unidirectional flow in the absence of valves. It requires asymmetrical positioning of the pincher relative to the attachment sites of its elastic segment to the rest of the circuit. Biological feasibility of such valveless pumps remains a hotly debated topic. To test the feasibility of the Liebau-based pumping in vessels with biologically relevant properties we quantified the output of Liebau pumps with their  compliant segments made of a silicone rubber that mimicked the Young modulus of soft tissues. The lengths, the inner diameters, thicknesses of the tested compliant segments ranged from 1 to 5 cm, 3 to 8 mm and 0.3 to 1 mm, respectively. The compliant segment of the setup was compressed at 0.5-2.5 Hz frequencies using a 3.5-mm-wide rectangular piston. A nearest-neighbor tracking algorithm was used to track movements of 0.5-mm carbon particles within the system. The viscosity of the aqueous solution was varied by increased percentage of glycerin. Measurements yielded quantitative relationships between viscosity, frequency of compression and the net flowrate. The use of the Liebau principle of valveless pumping in conjunction with physiologically sized vessel and contraction frequencies yields flowrates comparable to peristaltic pumps of the same dimensions. We conclude that the data confirm physiological feasibility of Liebau-based pumping and warrant further testing of its mechanism using excised biological conduits or tissue engineered components. Such biomimetic pumps can serve as energy-efficient flow generators in microdevices or to study the function of embryonic heart during its normal development or in diseased states.

5.
Front Physiol ; 12: 770906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173623

RESUMO

Valveless pumping based on Liebau mechanism entails asymmetrical positioning of the compression site relative to the attachment sites of the pump's elastic segment to the rest of the circuit. Liebau pumping is believed to play a key role during heart development and be involved in several other physiological processes. Until now studies of Liebau pump have been limited to numerical analyses, in silico modeling, experiments using non-biological elements, and a few indirect in vivo measurements. This review aims to stimulate experimental efforts to build Liebau pumps using biologically compatible materials in order to encourage further exploration of the fundamental mechanisms behind valveless pumping and its role in organ physiology. The covered topics include the biological occurrence of Liebau pumps, the main differences between them and the peristaltic flow, and the potential uses and body sites that can benefit from implantable valveless pumps based on Liebau principle. We then provide an overview of currently available tools to build such pumps and touch upon limitations imposed by the use of biological components. We also talk about the many variables that can impact Liebau pump performance, including the concept of resonant frequencies, the shape of the flowrate-frequency relationship, the flow velocity profiles, and the Womersley numbers. Lastly, the choices of materials to build valveless impedance pumps and possible modifications to increase their flow output are briefly discussed.

6.
J Biomed Opt ; 25(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33084257

RESUMO

SIGNIFICANCE: For use in medical balloons and related clinical applications, polymers are usually designed for transparency under illumination with white-light sources. However, when illuminated with ultraviolet (UV) or blue light, most of these materials autofluoresce in the visible range, which can be a concern for modalities that rely on tissue autofluorescence for diagnostic or therapeutic purposes. AIM: A search for published information on spectral properties of polymers that can be used for medical balloon manufacturing revealed a scarcity of published information on this subject. The aim of these studies was to address this gap. APPROACH: The autofluorescence properties of polymers used in medical balloon manufacturing were examined for their suitability for hyperspectral imaging and related applications. Excitation-emission matrices of different balloon materials were acquired within the 320- to 620-nm spectral range. In parallel, autofluorescence profiles from the 420- to 620-nm range were extracted from hyperspectral datasets of the same samples illuminated with UV light. The list of tested polymers included polyurethanes, nylon, polyethylene terephthalate (PET), polyether block amide (PEBAX), vulcanized silicone, thermoplastic elastomers with and without talc, and cyclic olefin copolymers, known by their trade name TOPAS. RESULTS: Each type of polymer exhibited a specific pattern of autofluorescence. Polyurethanes, PET, and thermoplastic elastomers containing talc had the highest autofluorescence values, while sheets made of nylon, PEBAX, and TOPAS exhibited negligible autofluorescence. Hyperspectral imaging was used to illustrate how the choice of specific balloon material can impact the ability of principal component analysis to reveal the ablated cardiac tissue. CONCLUSIONS: The data revealed significant differences between autofluorescence profiles of the polymers and pointed to the most promising balloon materials for clinical implementation of approaches that depend on tissue autofluorescence.


Assuntos
Coração , Polímeros , Iluminação
7.
Stem Cell Res Ther ; 11(1): 417, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32988411

RESUMO

BACKGROUND: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show tremendous promise for cardiac regeneration, but the successful development of hESC-CM-based therapies requires improved tools to investigate their electrical behavior in recipient hearts. While optical voltage mapping is a powerful technique for studying myocardial electrical activity ex vivo, we have previously shown that intra-cardiac hESC-CM grafts are not labeled by conventional voltage-sensitive fluorescent dyes. We hypothesized that the water-soluble voltage-sensitive dye di-2-ANEPEQ would label engrafted hESC-CMs and thereby facilitate characterization of graft electrical function and integration. METHODS: We developed and validated a novel optical voltage mapping strategy based on the simultaneous imaging of the calcium-sensitive fluorescent protein GCaMP3, a graft-autonomous reporter of graft activation, and optical action potentials (oAPs) derived from di-2-ANEPEQ, which labels both graft and host myocardium. Cardiomyocytes from three different GCaMP3+ hESC lines (H7, RUES2, or ESI-17) were transplanted into guinea pig models of subacute and chronic infarction, followed by optical mapping at 2 weeks post-transplantation. RESULTS: Use of a water-soluble voltage-sensitive dye revealed pro-arrhythmic properties of GCaMP3+ hESC-CM grafts from all three lines including slow conduction velocity, incomplete host-graft coupling, and spatially heterogeneous patterns of activation that varied beat-to-beat. GCaMP3+ hESC-CMs from the RUES2 and ESI-17 lines both showed prolonged oAP durations both in vitro and in vivo. Although hESC-CMs partially remuscularize the injured hearts, histological evaluation revealed immature graft structure and impaired gap junction expression at this early timepoint. CONCLUSION: Simultaneous imaging of GCaMP3 and di-2-ANEPEQ allowed us to acquire the first unambiguously graft-derived oAPs from hESC-CM-engrafted hearts and yielded critical insights into their arrhythmogenic potential and line-to-line variation.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Cobaias , Miocárdio
8.
Sci Rep ; 10(1): 15369, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958843

RESUMO

Radiofrequency ablation is a commonly used clinical procedure that destroys arrhythmogenic sources in patients suffering from atrial fibrillation and other types of cardiac arrhythmias. To improve the success of this procedure, new approaches for real-time visualization of ablation sites are being developed. One of these promising methods is hyperspectral imaging, an approach that detects lesions based on changes in the endogenous tissue autofluorescence profile. To facilitate the clinical implementation of this approach, we examined the key variables that can influence ablation-induced spectral changes, including the drop in myocardial NADH levels, the release of lipofuscin-like pigments, and the increase in diffuse reflectance of the cardiac muscle beneath the endocardial layer. Insights from these experiments suggested simpler algorithms that can be used to acquire and post-process the spectral information required to reveal the lesion sites. Our study is relevant to a growing number of multilayered clinical targets to which spectral approaches are being applied.


Assuntos
Endocárdio/patologia , Coração/fisiologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Ablação por Cateter/métodos , Bovinos , Endocárdio/metabolismo , Humanos , Lipofuscina/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Imagem Óptica/métodos , Pigmentos Biológicos/metabolismo , Ratos , Suínos , Resultado do Tratamento
9.
Cardiovasc Eng Technol ; 11(5): 560-575, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32666326

RESUMO

PURPOSE: Multiple studies have shown that spectral analysis of tissue autofluorescence can be used as a live indicator for various pathophysiological states of cardiac tissue, including ischemia, ablation-induced damage, or scar formation. Yet today there are no percutaneous devices that can detect autofluorescence signals from inside a beating heart. Our aim was to develop a prototype catheter to demonstrate the feasibility of doing so. METHODS AND RESULTS: Here we summarize technical solutions leading to the development of a percutaneous catheter capable of multispectral imaging of intracardiac surfaces. The process included several iterations of light sources, optical filtering, and image acquisition techniques. The developed system included a compliant balloon, 355 nm laser irradiance, a high-sensitivity CCD, bandpass filtering, and image acquisition synchronized with the cardiac cycle. It enabled us to capture autofluorescence images from multiple spectral bands within the visible range while illuminating the endocardial surface with ultraviolet light. Principal component analysis and other spectral unmixing post-processing algorithms were then used to reveal target tissue. CONCLUSION: Based on the success of our prototype system, we are confident that the development of ever more sensitive cameras, recent advances in tunable filters, fiber bundles, and other optical and computational components makes it possible to create percutaneous catheters capable of acquiring hyper or multispectral hypercubes, including those based on autofluorescence, in real-time. This opens the door for widespread use of this methodology for high-resolution intraoperative imaging of internal tissues and organs-including cardiovascular applications.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Cateterismo Cardíaco/instrumentação , Cateteres Cardíacos , Ablação por Cateter/instrumentação , Imageamento Hiperespectral/instrumentação , Iluminação/instrumentação , Imagem Óptica/instrumentação , Animais , Fibrilação Atrial/cirurgia , Desenho de Equipamento , Humanos , Valor Preditivo dos Testes
11.
J 3D Print Med ; 3(1): 11-22, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31555480

RESUMO

AIM: To 3D print heart tissue, one must understand how the main two types of cardiac cells are affected by the printing process. MATERIALS & METHODS: Effects of gelatin methacryloyl (GelMA) concentration, extruder pressure and duration of UV exposure on survival of cardiac myocytes and fibroblasts were examined using lactate dehydrogenase and LIVE/DEAD assays, bioluminescence imaging and morphological assessment. RESULTS & CONCLUSION: Cell survival within 3D printed cardiomyocyte-laden GelMA constructs was more sensitive to extruder pressure and GelMA concentrations than within 3D fibroblast-laden GelMA constructs. Cells within both types of constructs were adversely impacted by the UV curing step. Use of mixed cell populations and enrichment of bioink formulation with fibronectin led to an improvement of cardiomyocyte survival and spreading.

12.
Biomed Opt Express ; 9(5): 2189-2204, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760980

RESUMO

In vivo autofluorescence hyperspectral imaging of moving objects can be challenging due to motion artifacts and to the limited amount of acquired photons. To address both limitations, we selectively reduced the number of spectral bands while maintaining accurate target identification. Several downsampling approaches were applied to data obtained from the atrial tissue of adult pigs with sites of radiofrequency ablation lesions. Standard image qualifiers such as the mean square error, the peak signal-to-noise ratio, the structural similarity index map, and an accuracy index of lesion component images were used to quantify the effects of spectral binning, an increased spectral distance between individual bands, as well as random combinations of spectral bands. Results point to several quantitative strategies for deriving combinations of a small number of spectral bands that can successfully detect target tissue. Insights from our studies can be applied to a wide range of applications.

13.
Heart Rhythm ; 15(4): 564-575, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29246829

RESUMO

BACKGROUND: Treatment of cardiac arrhythmias often involves ablating viable muscle tissue within or near islands of scarred myocardium. Yet, today there are limited means by which the boundaries of such scars can be visualized during surgery and distinguished from the sites of acute injury caused by radiofrequency (RF) ablation. OBJECTIVE: We sought to explore a hyperspectral imaging (HSI) methodology to delineate and distinguish scar tissue from tissue injury caused by RF ablation. METHODS: RF ablation of the ventricular surface of live rats that underwent thoracotomy was followed by a 2-month animal recovery period. During a second surgery, new RF lesions were placed next to the scarred tissue from the previous ablation procedure. The myocardial infarction model was used as an alternative way to create scar tissue. RESULTS: Excitation-emission matrices acquired from the sites of RF lesions, scar region, and the surrounding unablated tissue revealed multiple spectral changes. These findings justified HSI of the heart surface using illumination with 365 nm UV light while acquiring spectral images within the visible range. Autofluorescence-based HSI enabled to distinguish sites of RF lesions from scar or unablated myocardium in open-chest rats. A pilot version of a percutaneous HSI catheter was used to demonstrate the feasibility of RF lesion visualization in atrial tissue of live pigs. CONCLUSION: HSI based on changes in tissue autofluorescence is a highly effective tool for revealing-in vivo and with high spatial resolution-surface boundaries of myocardial scar and discriminating it from areas of acute necrosis caused by RF ablation.


Assuntos
Ablação por Cateter/métodos , Cicatriz/patologia , Átrios do Coração/patologia , Ventrículos do Coração/patologia , Miocárdio/patologia , Espectrometria de Fluorescência/métodos , Taquicardia Ventricular/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Sistema de Condução Cardíaco/patologia , Sistema de Condução Cardíaco/cirurgia , Masculino , Ratos , Ratos Sprague-Dawley , Taquicardia Ventricular/patologia
14.
J Med Imaging (Bellingham) ; 5(4): 046003, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30840727

RESUMO

Atrial fibrillation is the most common cardiac arrhythmia. It is being effectively treated using the radiofrequency ablation (RFA) procedure, which destroys culprit tissue and creates scars that prevent the spread of abnormal electrical activity. Long-term success of RFA could be improved further if ablation lesions can be directly visualized during the surgery. We have shown that autofluorescence-based hyperspectral imaging (aHSI) can help to identify lesions based on spectral unmixing. We show that use of k -means clustering, an unsupervised learning method, is capable of detecting RFA lesions without a priori knowledge of the lesions' spectral characteristics. We also show that the number of spectral bands required for successful lesion identification can be significantly reduced, enabling the use of increased spectral bandwidth. Together, these findings can help with clinical implementation of a percutaneous aHSI catheter, since by reducing the number of spectral bands one can reduce hypercube acquisition and processing times, and by increasing the spectral width of individual bands one can collect more photons. The latter is of critical importance in low-light applications such as intracardiac aHSI. The ultimate goal of our studies is to help improve clinical outcomes for atrial fibrillation patients.

15.
Cardiovasc Eng Technol ; 8(4): 505-514, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28884368

RESUMO

The purpose of this study was to evaluate structural and optical properties of atrial tissue from common animal models and to compare it with human atria. We aimed to do this in a format that will be useful for development of better ablation tools and/or new means for visualizing atrial lesions. Human atrial tissue from clinically relevant age group was compared and contrasted with atrial tissue of large animal models commonly available for research purposes. These included pigs, sheep, dogs and cows. The presented data include area measurements of smooth atrial surface available for ablation and estimates of thickness of collagen and muscle for five different species. We also described methods to quantify presence of collagen and overall thickness of atrial wall. Provided information enables placement of atrial lesions to locations with clinically relevant atrial wall thickness and macroscopic structure ultimately helping investigators to develop better ablation and imaging tools. It also highlights the impact of collagen thickness on optical measurements and lesion visualization.


Assuntos
Átrios do Coração/anatomia & histologia , Átrios do Coração/química , Técnicas de Ablação/métodos , Fatores Etários , Idoso , Animais , Bovinos , Colágeno/análise , Cães , Feminino , Átrios do Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Ovinos , Especificidade da Espécie , Suínos
16.
J Biophotonics ; 10(8): 1008-1017, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27545317

RESUMO

Radiofrequency ablation (RFA) is a widely used treatment for atrial fibrillation, the most common cardiac arrhythmia. Here, we explore autofluorescence hyperspectral imaging (aHSI) as a method to visualize RFA lesions and interlesional gaps in the highly collagenous left atrium. RFA lesions made on the endocardial surface of freshly excised porcine left atrial tissue were illuminated by UV light (365 nm), and hyperspectral datacubes were acquired over the visible range (420-720 nm). Linear unmixing was used to delineate RFA lesions from surrounding tissue, and lesion diameters derived from unmixed component images were quantitatively compared to gross pathology. RFA caused two consistent changes in the autofluorescence emission profile: a decrease at wavelengths below 490 nm (ascribed to a loss of endogenous NADH) and an increase at wavelengths above 490 nm (ascribed to increased scattering). These spectral changes enabled high resolution, in situ delineation of RFA lesion boundaries without the need for additional staining or exogenous markers. Our results confirm the feasibility of using aHSI to visualize RFA lesions at clinically relevant locations. If integrated into a percutaneous visualization catheter, aHSI would enable widefield optical surgical guidance during RFA procedures and could improve patient outcome by reducing atrial fibrillation recurrence.


Assuntos
Ablação por Cateter , Coração/diagnóstico por imagem , Imagem Óptica , Animais , Fibrilação Atrial/cirurgia , Humanos , Suínos
17.
PLoS One ; 11(12): e0167760, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27930718

RESUMO

BACKGROUND: Currently, there are limited means for high-resolution monitoring of tissue injury during radiofrequency ablation procedures. OBJECTIVE: To develop the next generation of visualization catheters that can reveal irreversible atrial muscle damage caused by ablation and identify viability gaps between the lesions. METHODS: Radiofrequency lesions were placed on the endocardial surfaces of excised human and bovine atria and left ventricles of blood perfused rat hearts. Tissue was illuminated with 365nm light and a series of images were acquired from individual spectral bands within 420-720nm range. By extracting spectral profiles of individual pixels and spectral unmixing, the relative contribution of ablated and unablated spectra to each pixel was then displayed. Results of spectral unmixing were compared to lesion pathology. RESULTS: RF ablation caused significant changes in the tissue autofluorescence profile. The magnitude of these spectral changes in human left atrium was relatively small (< 10% of peak fluorescence value), yet highly significant. Spectral unmixing of hyperspectral datasets enabled high spatial resolution, in-situ delineation of radiofrequency lesion boundaries without the need for exogenous markers. Lesion dimensions derived from hyperspectral imaging approach strongly correlated with histological outcomes. Presence of blood within the myocardium decreased the amplitude of the autofluorescence spectra while having minimal effect on their overall shapes. As a result, the ability of hyperspectral imaging to delineate ablation lesions in vivo was not affected. CONCLUSIONS: Hyperspectral imaging greatly increases the contrast between ablated and unablated tissue enabling visualization of viability gaps at clinically relevant locations. Data supports the possibility for developing percutaneous hyperspectral catheters for high-resolution ablation guidance.


Assuntos
Diagnóstico por Imagem/métodos , Átrios do Coração/diagnóstico por imagem , Animais , Bovinos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Ondas de Rádio
18.
Tissue Eng Part A ; 21(19-20): 2559-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26218149

RESUMO

BACKGROUND: Rapidly improving protocols for the derivation of autologous cells from stem cell sources is a welcome development. However, there are many circumstances when off-the-shelf universally immunocompatible cells may be needed. Embryonic stem cells (ESCs) provide a unique opportunity to modify the original source of differentiated cells to minimize their rejection by nonautologous hosts. HYPOTHESIS: Immune rejection of nonautologous human embryonic stem cell (hESC) derivatives can be reduced by downregulating human leukocyte antigen (HLA) class I molecules, without affecting the ability of these cells to differentiate into specific lineages. METHODS AND RESULTS: Beta-2-microglobulin (B2M) expression was decreased by lentiviral transduction using human anti-HLA class I light-chain B2M short hairpin RNA. mRNA levels of B2M were decreased by 90% in a RUES2-modified hESC line, as determined by quantitative real time-polymerase chain reaction analysis. The transduced cells were selected under puromycin pressure and maintained in an undifferentiated state. The latter was confirmed by Oct4 and Nanog expression, and by the formation of characteristic round-shaped colonies. B2M downregulation led to diminished HLA-I expression on the cell surface, as determined by flow cytometry. When used as target cells in a mixed lymphocyte reaction assay, transduced hESCs and their differentiated derivatives did not stimulate allogeneic T-cell proliferation. Using a cardiac differentiation protocol, transduced hESCs formed a confluent layer of cardiac myocytes and maintained a low level of B2M expression. Transduced hESCs were also successfully differentiated into a hepatic lineage, validating their capacity to differentiate into multiple lineages. CONCLUSIONS: HLA-I depletion does not preclude hESC differentiation into cardiac or hepatic lineages. This methodology can be used to engineer tissue from nonautologous hESC sources with improved immunocompatibility.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual/métodos , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 309(2): H267-75, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25980024

RESUMO

Biomonitoring studies have indicated that humans are routinely exposed to bisphenol A (BPA), a chemical that is commonly used in the production of polycarbonate plastics and epoxy resins. Epidemiological studies have shown that BPA exposure in humans is associated with cardiovascular disease; however, the direct effects of BPA on cardiac physiology are largely unknown. Previously, we have shown that BPA exposure slows atrioventricular electrical conduction, decreases epicardial conduction velocity, and prolongs action potential duration in excised rat hearts. In the present study, we tested if BPA exposure also adversely affects cardiac contractile performance. We examined the impact of BPA exposure level, sex, and pacing rate on cardiac contractile function in excised rat hearts. Hearts were retrogradely perfused at constant pressure and exposed to 10(-9)-10(-4) M BPA. Left ventricular developed pressure and contractility were measured during sinus rhythm and during pacing (5, 6.5, and 9 Hz). Ca(2+) transients were imaged from whole hearts and from neonatal rat cardiomyocyte layers. During sinus rhythm in female hearts, BPA exposure decreased left ventricular developed pressure and inotropy in a dose-dependent manner. The reduced contractile performance was exacerbated at higher pacing rates. BPA-induced effects on contractile performance were also observed in male hearts, albeit to a lesser extent. Exposure to BPA altered Ca(2+) handling within whole hearts (reduced diastolic and systolic Ca(2+) transient potentiation) and neonatal cardiomyocytes (reduced Ca(2+) transient amplitude and prolonged Ca(2+) transient release time). In conclusion, BPA exposure significantly impaired cardiac performance in a dose-dependent manner, having a major negative impact upon electrical conduction, intracellular Ca(2+) handing, and ventricular contractility.


Assuntos
Compostos Benzidrílicos/toxicidade , Ventrículos do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Fenóis/toxicidade , Função Ventricular Esquerda/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Estimulação Cardíaca Artificial , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Técnicas In Vitro , Masculino , Ratos Sprague-Dawley , Fatores Sexuais , Fatores de Tempo
20.
Biomed Mater ; 10(3): 034101, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25775354

RESUMO

The presence of non-autologous major histocompatibility complex class I (MHC-I) molecules on the surface of the grafted cells is one of the main reasons for their rejection in non-syngeneic hosts. We present a straightforward strategy to decrease the presence of MHC-I by shRNA inhibition of beta-2-microglobulin (B2M), a conservative light chain of MHC-I, on the surface of two main cell types that are used to engineer heart tissue constructs. Engineered heart tissue constructs can be generated by combining mouse WT19 fibroblasts and mouse embryonic stem cell-derived cardiac myocytes (mESC-CM). WT19 fibroblasts were stably transduced with an anti-B2M shRNA, which yielded a cell line with dramatically reduced B2M expression levels (16 ± 11% of mock treated control cell line). Interferon gamma treatment increased the levels of B2M expression by >3-fold in both control and transduced fibroblasts; yet, B2M expression levels still remained very low in the transduced cells. When compared with their unmodified counterparts, transduced fibroblasts caused 5.7-fold lesser activation of cognate T-cells. B2M depletion in mESC-CM was achieved by 72 h transduction with anti-B2M shRNA lentiviral particles. Transduced mESC-CM exhibited regular beating and expressed classical cardiac markers. When compared with their unmodified counterparts, transduced mESC-CM caused 2.5-fold lesser activation of cognate T-cells. In vivo assessment of B2M downregulation was performed by analyzing the preferential survival of B2M-downregulated cells in the intraperitoneal cavity of allogeneic mice. Both B2M-downregulated fibroblasts and B2M-downregulated myocytes survived significantly better when compared to their unmodified counterparts (2.01 ± 0.4 and 5.07 ± 1.6 fold increase in survival, respectively). In contrast, when modified WT19 fibroblasts were injected into the intraperitoneal cavity of syngeneic C57Bl/6 mice, no significant survival advantage was observed. Notably, the preferential survival of B2M-downregulated cells persisted in allogeneic hosts with normal levels of natural killer cells, although the effect was lesser in magnitude. Use of shRNA against beta-2-microglobulin offers a simple and effective approach to minimize immunogenicity of the main cellular components of cardiac tissue constructs in non-syngeneic recipients.


Assuntos
Coração/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Miócitos Cardíacos/fisiologia , Linfócitos T/fisiologia , Engenharia Tecidual/métodos , Microglobulina beta-2/sangue , Animais , Bioprótese , Diferenciação Celular/fisiologia , Linhagem Celular , Regulação para Baixo/fisiologia , Melhoramento Genético/métodos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...